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Abstract 

Efficient maize production and resource allocation are crucial for agricultural 

sustainability, particularly in climate-vulnerable areas like Southeast Nigeria. This 

study employs stochastic frontier analysis (SFA) to investigate the efficiency of maize 

production and the determinants of allocative efficiency under climate-smart 

agricultural practices (CSAPs). The study includes 375 maize farmers selected 

randomly for the research sample. The analysis begins with estimating the efficiency 

parameter of maize production, revealing a relatively low Sigma-square value (0.029) 

and a moderate Gamma value (0.786). The study found a positive association between 

various inputs such as landholding, seed quality, and organic manure application. The 

mean TE and AE are 0.894 and 0.747 respectively. Allocative efficiency analysis 

reveals that while water management practices significantly affect technical efficiency 

positively, they unexpectedly lead to lower AE. Access to information and adoption 

of early planting positively influence allocative efficiency. Further examination of 

socioeconomic determinants indicates the role of extension services (3.07)*** in 

enhancing AE, while cooperative membership negatively impacts it, possibly due to 

information asymmetry. These findings emphasize the need for tailored interventions 

to optimize resource allocation strategies and enhance agricultural productivity and 

sustainability in Southeast Nigeria, particularly amidst the challenges posed by climate 

change. Comprehending the complex dynamics of resource allocation and efficiency 

in agriculture is crucial for crafting efficient policies and interventions aimed at 

improving productivity and resilience amidst changing climate conditions. 
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1. Introduction 

Maize (Zea mays L.) is a crucial staple crop in Nigeria, serving as a primary source of food, feed, and income for millions of 

households across the nation (Obianefo et al., 2022) [54]. As the demand for maize continues to rise in response to population 

growth and changing consumption patterns, ensuring the efficiency and sustainability of its production becomes imperative 

(Boakye, 2023) [20]. Given the challenges posed by climate change variabilities, embracing climate-smart agricultural practices 

(CSAPs) has emerged as a promising strategy to enhance agricultural productivity while mitigating environmental impacts 

(Assefa, 2023 & Asante et al., 2024) [17, 16]. In Southeast Nigeria, where maize cultivation is prevalent, understanding the 

efficiency of maize production under the influence of CSAPs and socioeconomic determinants is essential for devising effective 

policies aimed at promoting sustainable agriculture and food security. 

According to Obianefo et al. (2021) [55]; Obianefo et al. (2023) [53] and Keghter et al. (2023) [35], Stochastic Frontier Analysis 

(SFA) has been widely employed to assess the efficiency of agricultural production systems by separating observed output from 

the maximum achievable output given the same inputs and technology. By estimating the efficiency parameter of maize  
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production, researchers gain insights into the performance of 

maize farmers relative to the production frontier (Ng’ombe, 

and Kalinda, 2015; Ng’ombe, 2017; Yakubu et al., 2022) [49, 

48, 68], thereby identifying areas for improvement and 

optimization. However, previous studies by Biam et al. 

(2016) [19]; Ebuki̇Ba et al. (2020); and Kehinde et al. (2024) 
[36] on maize production efficiency in Nigeria and Africa in 

general have often overlooked the specific influence of 

CSAPs and socioeconomic factors on efficiency levels, thus 

restricting the comprehension of the fundamental 

mechanisms propelling productivity within the context of 

shifting climatic conditions. 

This study fills this void by conducting an exhaustive analysis 

of maize production. efficiency in Southeast Nigeria, with a 

particular focus on the role of CSAPs and socioeconomic 

determinants. By employing SFA, the efficiency levels 

among maize farmers are estimated, allowing for the 

identification of factors contributing to variations in 

productivity (Ng’ombe, 2017; Obianefo et al., 2020; Tsiboe 

et al., 2022) [48, 52, 65]. Moreover, the study examines the 

adoption and impact of CSAPs on maize output, considering 

their interaction with socioeconomic characteristics. By 

integrating CSAPs variables with socioeconomic 

determinants, this research aims to provide policymakers 

with actionable insights into designing interventions that 

promote sustainable maize production to meet the growing 

food demand in Nigeria and beyond. 

The significance of this study lies in its potential to inform 

evidence-based policies and interventions aimed at 

enhancing the resilience and productivity of maize farming 

systems in Southeast Nigeria. By understanding the 

determinants of efficiency and the role of CSAPs, 

policymakers can formulate targeted strategies to support 

farmers in adopting practices that improve productivity, 

conserve natural resources, and mitigate the adverse effects 

of climate change (Oyetunde‐Usman, and Shee, 2023) [60]. 

Furthermore, by focusing on Southeast Nigeria, where maize 

production is a vital component of the agricultural landscape, 

this research contributes to the broader discourse on 

sustainable agricultural development in Nigeria and Africa as 

a whole. 

 

1.2 Statement of the Problem 

Maize production in Southeast Nigeria faces multifaceted 

challenges stemming from both internal and external factors, 

including climate variability, resource constraints, and socio-

economic dynamics (Obianefo et al., 2022; Orgu et al., 2024) 
[54, 58]. Despite the significance of maize as a staple crop and 

a vital livelihood source for millions of farmers in Africa 

(Martey et al., 2020) [44] and Nigeria in particular, there 

remains a critical knowledge gap regarding the efficiency of 

maize production and the determinants shaping productivity 

under the ambit of climate-smart agricultural practices 

(CSAPs) (Anuga et al., 2019) [14]. Understanding the 

efficiency of maize production and the factors influencing it 

is essential for devising targeted interventions that promote 

sustainable agricultural development (Hassan et al., 2014) [30] 

and ensure food security in Nigeria and Africa at large. 

The existing literature by Adedeji et al. (2011) [4]; Aye, and 

Mungatana (2012) [18]; Chan et al. (2017) [23]; Fasakin, & 

Akinbode (2020) [29]; and Oluwole et al. (2021) [57] on maize 

production efficiency in Nigeria and Africa provides valuable 

insights into the technical, allocative, and economic 

efficiency of farming systems. However, the majority of 

these studies have focused on conventional production 

practices without adequately considering the influence of 

climate-smart agricultural practices (CSAPs) and their 

interaction with socioeconomic factors. As climate change 

continues to exert pressure on agricultural systems, there is 

an immediate requirement to evaluate the effectiveness of 

CSAPs in improving productivity, resilience, and 

sustainability in maize farming, as highlighted by Sadiq et al. 

(2019) [63]. 

Furthermore, while previous research such as Zakaria et al. 

(2020) [69]; Acevedo et al. (2020) [2]; Oyetunde-Usman & 

Shee (2023) [60]; and Ankrah et al. (2023) [13] have examined 

the adoption and impact of CSAPs in various agricultural 

contexts, including Southeast Nigeria, there remains limited 

empirical evidence on their specific effects on maize 

production efficiency. Furthermore, the existing literature 

lacks a thorough analysis that combines CSAP variables with 

socioeconomic determinants to clarify the actual impact of 

these practices on maize output in Anambra State. Such an 

analysis is crucial for policymakers seeking to design 

evidence-based interventions aimed at promoting sustainable 

maize production and meeting the increasing food demand in 

Nigeria and Africa as a whole. 

Several studies have shed light on the factors that influence 

the practice of Climate-Smart Agriculture (CSA) and their 

impact on food productivity. The study by Mashi et al. (2022) 
[45] identified a range of CSAPs such as mulching, controlled 

irrigation, crop rotation, and residue management, alongside 

climate knowledge and experience, as key influencers of food 

productivity. Socioeconomic determinants also played a 

significant role, with variables including farm size, 

cooperative membership, contact to extension services, age, 

household size, and education level being identified as crucial 

factors in the application of CSAPs. Afolami and Faleye 

(2020) [6] as well as Kalu and Mbanasor (2023) [32] delved into 

the adoption dynamics of CSAPs, revealing that farm size, 

age, access to credit, education level, and ownership of means 

of transport are influential factors. Ebukiba et al. (2020) [26] 

conducted a study focusing on maize productivity, finding a 

mean technical efficiency (TE) value of 0.950, indicating a 

high level of efficiency in their sample. Abubakar and 

Onwujioba (2023) explored various efficiency metrics, 

reporting mean efficiencies of 97.5% for TE, 46.5% for 

allocative efficiency (AE), and 45.0% for economic 

efficiency (EE). In contrast, Umaru and Maurice identified a 

lower mean TE value of 62% in their study. These findings 

collectively underscore the multifaceted nature of CSAP 

adoption and its implications for agricultural productivity and 

efficiency. 

Therefore, this study seeks to address the following key 

research questions: 

1. Can the study estimate the efficiency parameter of maize 

farmers in Southeast, Nigeria? 

2. What is the level of efficiency in maize production 

among farmers in Southeast Nigeria? 

3. What are the determinants of maize production 

efficiency, including the influence of climate-smart 

agricultural practices (CSAPs) and socioeconomic 

factors? 

 

By exploring these research questions through the lens of 

SFA and a comprehensive assessment of CSAPs and 

socioeconomic determinants, This study seeks to add to the 

current body of knowledge regarding efficiency in maize 
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production and inform evidence-based policies and 

interventions for sustainable agricultural development in 

Southeast Nigeria. 

 

1.3 Objectives of the study 

The main aim of this study is to stochastically investigate 

maize production efficiency and its Climate-Smart 

Agricultural Practices determinants in Southeast, Nigeria. 

The study is specifically designed to: 

1. Estimate the efficiency parameter of maize production in 

Southeast, Nigeria;  

2. Ascertain the level of efficiencies among maize farmers 

under the CSAPs in Southeast, Nigeria; and 

3. Describe the CSAPs determinants of Maize farmers’ 

efficiency. 

 

2.1 Analytical Framework 

Efficiency is a common term in production economics used 

to describe the extent to which time, effort, or scarce 

resources are well managed for production purposes (Ehirim 

et al., 2016; Chukwujekwu et al., 2021) [28, 24]. Technical and 

allocative efficiencies are both vital components in 

agricultural production systems, particularly in Southeast 

Nigeria where farming is a significant economic activity, 

being that efficiency is used to refer to the success of 

producing the highest amount of output possible at a given 

level of input (Ajayi et al., 2018) [8]. A Stochastic Frontier 

Analysis (SFA) of maize production efficiency of this nature 

provides a clue into how efficiently resources are being 

utilized and allocated within the agricultural sector, 

particularly in the maize subsector. However, investigating 

the factors influencing efficiency in the adoption of climate-

smart agriculture highlights strategies for improving 

productivity while mitigating climate risks. 

Technical efficiency refers to the ability of producers to 

obtain the maximum output from a given set of inputs, 

considering the current state of technology (Adeoye, 2021) 
[5]. In the case of maize production in Southeast Nigeria, 

technical efficiency measures how effectively farmers utilize 

resources such as land, labour, capital, and inputs like 

fertilizers and pesticides to maximize maize yields. A high 

level of technical efficiency implies that farmers are utilizing 

resources optimally and effectively managing production 

processes to achieve higher yields. A corroborative assertion 

by Brown et al. (2015) [21] and Chukwujekwu et al. (2021) [24] 

noted that the practical application of TE leads to a better crop 

yield, food security, and improved standard of living. 

Allocative efficiency, conversely, concentrates on allocating 

resources in the most economically efficient way. Mahesh & 

Mahima (2018) [39] observed that it ensures that resources are 

allocated among different inputs in a way that maximizes 

output and minimizes production costs. Concerning maize 

production, allocative efficiency entails farmers allocating 

resources such as labour, land, and capital in a manner that 

maximizes profitability considering input prices and output 

prices (Ohajianya et al., 2013) [56]. 

A Stochastic Frontier Analysis provides a statistical 

framework for assessing both technical and allocative 

efficiency by distinguishing between the observed level of 

production and the maximum achievable level of production 

given the existing technology and resource constraints. This 

analysis helps identify the gap between actual and potential 

output, thereby offering insights into inefficiencies in 

resource utilization and allocation (Aigner et al., 1977; 

Malinga et al., 2015) [7, 43]. 

Mathematically, the stochastic production function as 

adapted from Chukwujekwu et al. (2021) [24] is defined as: 

 

𝑌𝑖 = 𝑓(𝑋𝑖 , 𝛽) + exp(𝑉𝑖 − 𝑈𝑖) , 𝑖 = 1, 2, … 𝑛  (1) 

 

Where: Yi is the maximum observed output from the ith maize 

farmers, Xi is the vector of inputs used by the ith farmers, β is 

the estimated parameter, Vi is the random error term, assumed 

to be normally distributed with mean zero and standard 

deviation of σ. (Ehirim et al. 2016; Obianefo et al., 2020, Ui 

is the technical inefficiency component  [28] (a non-negative 

random variable representing inefficiency or deviations from 

the frontier due to factors beyond the control of the firm 

(Osawe et al., 2018) [59].  

According to Ng’ombe (2017) [48] and Chukwujekwu et al. 

(2021) [24], the adoption of the maximum likelihood 

estimation procedure produces an SFA estimator, such as 

Sigma (σ) and Gamma (γ), which they mathematically define 

as: 

 

𝜎2 = 𝜎2
𝑣 + 𝜎2

𝑢  (2) 

 

𝛾 =
𝜎2

𝑢
𝜎2⁄    (3) 

 

Gamma (γ) represents the parameters associated with the 

inefficiency term in the stochastic frontier model, indicating 

how the explanatory variables affect the level of inefficiency 

observed in the data with a value between zero to one (0 < γ 

< 1). 

The farm-specific technical efficiency adapted from 

Akinbode (2011) is defined in terms of the ratio of observed 

output (Yi) to the corresponding frontier output (Yi*) using the 

available technology: 

 

𝑇𝐸 =  
𝑌𝑖

𝑌𝑖
∗ =

𝑓(𝑋𝑖,𝛽) + exp(𝑉𝑖−𝑈𝑖)

𝑓(𝑋𝑖,𝛽) + exp(𝑉𝑖)
=  exp(−𝑈𝑖)  (4) 

 

Again, the stochastic frontier cost functions model from 

where the level of farmers’ allocative efficiency was 

estimated adapted from Akinbode (2011) [9] and 

Chukwujekwu et al. (2021) [24] is specified as: 

 

𝐶𝑖 = 𝑔(𝑌𝑖 , 𝑃𝑖;  ∝) + 𝑒𝑥𝑝(𝑉𝑖 + 𝑈𝑖), 𝑖 = 1, 2, … 𝑛  (5) 

 

Where Ci represents the total production cost, Yi remains as 

previously explained, Pi represents the prices of inputs, ∝ 

represents the parameters of the cost function, and exp(Vi+ 

Ui ) remained as previously defined.  

 

The cost efficiency proxied for farm level allocative 

efficiency (AE) is defined as: 

 

𝐴𝐸 =
𝐶𝑖

𝐶𝑖
∗ =

𝐸(𝐶𝑖|𝑈𝑖=0,𝑌𝑖,𝑃𝑖)

𝐸(𝑌𝑖,|𝑈𝑖,𝑌𝑖,𝑃𝑖)
=  E[𝑒𝑥𝑝(+𝑈𝑖|𝜀) (6) 

 

Here AE takes values of 0 to 1. 

Moreover, examining the determinants of efficiency in maize 

production within the framework of climate-smart agriculture 

is particularly pertinent. Climate change poses significant 

challenges to agricultural productivity, with unpredictable 

weather patterns, increased occurrence of extreme events, 

and changing pest and disease dynamics (Ali et al., 2017). 

Adopting climate-smart agricultural practices such as 
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conservation agriculture, crop diversification, and efficient 

water management techniques can enhance resilience to 

climate change while improving productivity and 

sustainability (Malhi et al., 2021) [41]. In this study, the factors 

influencing efficiency comprise access to information about 

climate and advisory services, the uptake of resilient crop 

varieties against climate stress, the presence of irrigation 

infrastructure, the adoption of conservation tillage practices 

to diminish soil erosion and moisture loss, and access to 

credit for investing in climate-smart technologies. Analyzing 

the relationship between these determinants and efficiency 

provides a valuable insight into strategies for enhancing 

productivity and resilience in maize production systems in 

Southeast Nigeria. 

The determinants of inefficiency among maize farmers 

operating under the climate-smart agricultural practices is 

defined as: 

 
𝑈𝑖 = 𝛿0 + 𝛿1𝑍1 + 𝛿1𝑍1 + 𝛿1𝑍1 + ⋯ 𝛿10𝑍10 + 𝛿11𝑊11 + ⋯ 𝛿11𝑊11  (7) 
 

Where: Z1-10 represent the CSAPs variables (water 

management, minimum tillage, residue management, use of 

irrigation pump for dry season planting, mulching, crop 

rotation, improving access to information, adopting early 

planting, obtaining credit, and use of organic fertilizer to 

improve soil texture and structure); and W11-20 represents: W11 

= sex (dummy; male = 1, female = 0), W12 = age (year), W13 

= marital status (dummy; married = 1, otherwise = 0), W14 = 

years of formal learning (year), W15 = farming experience 

(year) and W16 = household size (No), W17 = cooperative 

membership (dummy: yes = 1, no = 0), W18 = access to credit 

(dummy: yes = 1, no = 0), W19 = number of extension 

advisory contact, and W20 = ever trained on CSAPs (dummy: 

yes = 1, no = 0). 

 

3 Materials and Methods 

3.1 Study Area 

This study was conducted in the Southeast geopolitical zone 

of Nigeria, which consists of five States (Anambra, Imo, 

Enugu, Abia, and Ebonyi). These states are divided into 101 

local government areas, which are further divided into 346 

communities. Southeast, Nigeria has a landmass of 41440 

Square-km, and is bordered by Akwa Ibom and Cross River 

States to the east, Benue and Kogi States to the north, Edo 

and Delta States to the west, and Rivers and Bayelsa States to 

the south (Merem et al., 2019) [46]. 

 
Table 1: The Distribution of Population in the South East 

 

State Population 

Abia 3,841,943 

Anambra 5,599,910 

Ebonyi 3,007,155 

Enugu 4,396,098 

Imo 5,167,722 

Total 22,012,828 

Source: NPC (2020) and NBS (2020) 
 

The National Population Commission (NPC, 2020) and 

National Bureau of Statistics (NBS, 2020) reported an 

estimated population of 22,012,828 people for the five States 

in Southeast, Nigeria as shown in Table 1. According to Mba, 

et al. (2021), the Southeast zone lies within the latitudinal 

coordinates of 04°47' and 07°07' North and longitudinal 

coordinates 6°35' and 8°27' East. 

  
 

Fig 1: Map of Nigeria showing Southeast region. Source: Merem 

et al. (2019) [46] 

 

3.2 Sample Size and Sampling Techniques 

The study utilized an infinite sample size determination 

technique adapted from Obianefo et al. (2021) to calculate 

the sample size, considering that the exact population of 

smallscale maize farmers in Southeast Nigeria is unknown, 

suggesting an infinite population of maize farmers practicing 

climate-smart agriculture. 

 

  
 

Where:  

n = sample size 

Z = Z-score at 95% confidence interval  

P = probability of success  

1 – P = failure  

e = error term at 0.05 level of probability.  

However, the sample is calculated as: 

 

  
 

A multistage sampling technique was utilized, incorporating 

both purposive and random selection methods for the study. 

In stage I, three states (Ebonyi, Enugu, and Anambra) were 

purposively chosen because of the prevalence of maize 

farming in these areas and the availability of numerous 

studies on climate change mitigation strategies for reference. 

In stage II, four Local Government Areas (LGAs) were 

randomly chosen from each state, amounting to a total of 12 

LGAs. From these, two communities were randomly selected 

from each LGA, resulting in a total of 24 communities. 

In stage III, from each community, four villages were 

randomly selected, accumulating to a total of 96 villages for  
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the study. 

Finally, in the last stage, four smallholder maize farmers who 

practice CSA will be selected randomly from each village, 

resulting in a sample size of 384 respondents. 

 
Table 2: Selected study location 

 

States 
Local Government 

Areas 
Communities 

Anam

bra 

Ogbaru, Umunankwo, and Ossomala 

Orumba North Ufuma, and Ndikelionwu 

Awka North Achalla, and Amanuke 

Ayamelum Omor, and Anaku 

Ebony

i 

Ikwo Ekpelu, and Alike 

Izzi 
Agbaja Mgbo, and Agbaja 

Offia Onwe 

Ishielu Ntezi, and Agba 

Ohaozara Ugwulangwu, and Okposi 

Enugu 

Udi Oghu, and Abor 

Nsukka Nsukka, and Opi-Agu, 

Awgu Isu-Awa, and Ogbaku 

Ezeagu 
Umuana-ndiagu, and 

Mgbabu-owa 

 

3.3 Data Collection 

Eight research assistants were recruited and trained by the 

researcher(s) to help with the data collection. They were 

taught about the contents of the questionnaire, and the 

fieldwork lasted for a period of five weeks (26th October to 

6th December 2023). An Android data collection toolkit 

called "Kobocollect" was used to enhance the quality and 

precision of data collection. 

 

Data Analysis 

The study used a combination of analytical tools including 

descriptive statistics, stochastic frontier analysis (SFA), and 

beta regression analysis. Objective one was achieved using 

the SFA, descriptive statistics was used to achieve objective 

two, and a beta regression model was used to achieve 

objective three.  

 

3.4 Model Specification 

A). Cobb Douglass (Double-log) Functional Form 

A more restrictive Cobb Douglass (Double-log) stochastic 

frontier analysis (SFA) technique under the MLE was used to 

evaluate the production and cost function. The analysis was 

estimated with current (2024) R software. The model is 

explicitly defined as: 

 

LnY = β0 + β1LnX1 + β2LnX2 + β3LnX3 + β4LnX4 + exp (Vi – 

Ui)  

 

Where: X1 = landholding (ha), X2 = seed (kg), X3 = organic 

manure (kg), X4 = labour (man-day). We anticipate that all 

the explanatory variables will exhibit positive significance. 

Therefore, β0 > 0; β1 > 0; β2 > 0; β3 > 0; and β4 > 0. Vi and 

Ui remained as earlier defined. Ui is assumed to follow an 

exponential function under two-stage maximum likelihood 

estimation procedure. Therefore, the farm specific efficiency 

is given as 1 – TE values (Coelli and Battese, 1996). 

Again, the cost function is defined as: 

 

LnC = β0 + β1LnP1 + β2LnP2 + β3LnP3 + β4LnP4 + β5Yi + 

exp(Vi + Ui)  

 

Where: C = total cost of production, P1 = normalized cost of 

landholding (N), P2 = normalized cost of seed (N), P3 = 

normalized cost of organic manure (N), P4 = normalized cost 

of labour (N), and Yi = total output of maize (kg). Summation 

of exp (Vi + Ui) is because the farm manager is expected to 

produce at a minimal cost.  

 

B). Beta regression analysis  

The explicit form of the beta regression model for multiple 

covariates to estimate the determinants of efficiencies are 

defined as: 
 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖) = 𝛽0 + 𝛽1𝑍1 + 𝛽2𝑍2 + ⋯ 𝛽𝑛𝑍𝑛 + 𝛽11𝑊11 + ⋯ 𝛽𝑛𝑊𝑛 
 

Where: μi is the value of efficiencies with a beta distribution 

for observation i. Zi and Wi is the covariate as previously 

explained. β0 is the intercept. Βi is the coefficient associated 

with the covariate Z and W. These parameters (β0 and βi) are 

estimated using maximum likelihood methods. 

 

4 Result and Discussion 

4.1.1 Estimation of the efficiency parameter of maize 

production in Southeast, Nigeria 

The stochastic frontier analysis (SFA) of maize farmers' 

production function is reflected in Table 3. The model 

adopted the maximum likelihood estimation approach to 

arrive at the best model fit index. The study revealed that 

maize farmers’ stochastic production function had a Sigma-

square value of 0.029, significant at a 1% level of probability. 

The study by Obianefo et al. (2022) argues that the Sigma-

square represents the variance in the production frontier 

associated with the stochastic random noise. A lower Sigma-

square value suggests that many of the observed variations in 

maize production is explained by the specified inputs and 

model, indicating relatively efficient production practices 

among maize farmers under CSAPs in Southeast Nigeria. 

This implies that only 2.9% of deviation from frontier maize 

output is associated with external factors not accounted for 

by the farmers’ managerial decision to practice climate-smart 

agriculture (CSA) as added in the model. Equally, the 

Gamma value of 0.786 is significant at a 1% level of 

significance. Obianefo et al. (2022) and Obianefo et al. 

(2023) equally noted that Gamma represents a parameter 

linked to the extent of technical inefficiency effects within 

the stochastic frontier model of maize production. A higher 

Gamma value indicates a low technical inefficiency index. 

However, the value of 0.786 suggests that there is still 21.4% 

room for improvement in productivity by adopting more 

efficient agricultural practices or technologies. 

The coefficient of intercept (β = 2.267) is positive and 

significant at a 1% (36.76)*** level of probability. This 

intercept reflects the baseline level of maize production not 

explained by the other variables in the model. This implies 

that maize output is expected to increase by 2.267 units when 

there are no landholding, seed, organic manure, or labour 

inputs. 

The coefficient of landholding (β = 0.370) is positive and 

significant at 1% (16.60)*** level of significance. This 

suggests that increasing landholding leads to higher maize 

production, holding other factors constant. Larger 

landholdings contribute positively to maize productivity 

under CSAPs by 0.370 units.  
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The coefficient of seed (β = 0.184) is positive and significant 

at a 1% (8.25)*** level of probability. This is an indication 

that increasing the logarithm of seed input results in higher 

maize production by 0.184 units, assuming other factors 

remain constant. This underscores the importance of seed 

quality or quantity in enhancing maize yields under CSAPs 

(Kansiime, and Mastenbroek, 2016) [34]. This result revealed 

that seed as an important input in maize production.  

The coefficient of organic manure (β = 0.035) is significant 

at a 5% (2.67)** level of probability. This suggests that 

increasing the logarithm of organic manure application leads 

to higher maize production by 0.035 units, all else being 

equal. This highlights the beneficial effect of organic manure 

in improving soil fertility and crop yields as argued by 

Alengebawy et al. (2021) [10]. 

The coefficient of labour (β = 0.149) is positive and 

significant at a 1% (6.96)*** level of probability. This is an 

indication that increasing labour supply (logged) results in 

higher maize production by 0.149 units, holding other factors 

constant. This underscores the importance of labour in 

agricultural production processes, possibly through activities 

such as planting, weeding, and harvesting. This result reveals 

that CSAPs are labour-intensive as suggested by Kangogo et 

al. (2021) [33] in their study of adoption of climate‐smart 

agriculture among smallholder farmers. 

 
Table 3: Estimation of the production parameter of maize 

production in Southeast, Nigeria 
 

Parameters Estimate Std. Error Z value 

(Intercept) 2.267 0.062 36.76*** 

Landholding 0.370 0.022 16.60*** 

Log (Seed) 0.184 0.022 8.25*** 

Log (Organic manure) 0.035 0.013 2.67** 

Log (Labour) 0.149 0.021 6.96*** 

Sigma-Square 0.029 0.003 9.61*** 

Gamma 0.786 0.044 17.87*** 

Log-likelihood ratio 266.905   

Likelihood ratio test 41.67*** 

Observation 375 

Source: Field Survey, 2023. (**, and ***) Significant @ 5% and 

1% respectively. 
 

Furthermore, the study highlights the necessity of addressing 

technical inefficiencies to further enhance productivity. 

These insights can inform policy interventions and 

agricultural extension services geared towards promoting 

sustainable and efficient maize production practices in 

Southeast Nigeria, taking into account participation in the 

African Continental Free Trade Area (AfCFTA). 

 

4.1.2 Estimation of the allocative parameter of maize 

production in Southeast, Nigeria 

Table 4 reflects the results of cost function of maize 

production under climate-smart agricultural practices 

(CSAPs) in Southeast Nigeria. The Sigma Square value of 

0.274 represents variation in inefficiency term in the cost 

function. A higher value indicates greater variability in costs 

that cannot be explained by the specified inputs and model 

(Pérez-Gómez et al., 2018) [61]. It suggests that 27.4% of 

inefficiencies in cost management within maize production 

under CSAPs are associated with stochastic random noise. 

Equally, the extremely high Gamma value of 0.988 suggests 

very low levels of allocative inefficiency, implying that the 

estimated costs are close to the frontier. 

The intercept represents the baseline level of costs not 

explained by the other variables in the model. In this case, the 

coefficient ((β = 5.996) is positive and significant at a 1% 

level of significance, it indicates that there are 5.996 units of 

fixed costs involved in maize production that are not captured 

by the specified inputs. 

The coefficient cost of land rent (β = 0.094) is positively 

significant at the 5% level of probability, this suggests that a 

unit increase in the cost of land rent leads to higher total 

production costs by 0.094 units. It indicates that land rental 

expenses contribute to the overall cost burden of maize 

farming (Achmad et al., 2022 and Lelea et al., 2022) [3, 37]. 

The coefficient of cost of seed (β = 0.318) is positively 

significant at the 1% level of significance, indicating that a 

higher expenditure on seeds is associated with increased total 

production costs by 0.318. This result is in agreement with 

the study by Japheth et al. (2020) who noted that the 

application of organic manure in the agricultural sector 

reduces production cost and maximizes profit. It highlights 

the importance of seed quality or quantity in maize farming 

and its impact on overall costs (Altieri et al., 2015) [12]. 

The positive and significant coefficient cost of organic 

manure (β = 0.069) at the 1% level of significance suggests 

that higher costs associated with organic manure contribute 

to increased total production costs by 0.069 units. It 

underscores the beneficial effect of organic manure in 

improving soil fertility (Alengebawy et al., 2021) [10] but also 

implies additional expenses for farmers. This study is in 

agreement with Ume et al. (2023) who found organic manure 

as a significant determinant of agricultural productivity in 

Southeast Nigeria. 
The coefficient of labour (β = 0.175) positively significant at the 

1% level of probability indicates that higher labour costs lead to 

increased total production costs by 0.175 units. It emphasized 

the crucial of labour in agricultural production processes 

(Lencucha et al., 2020) [38], suggesting that labour-intensive 

practices may contribute significantly to overall costs. 

The negative coefficient of maize output (β = 0.157) is 

significant at a 10% level of probability, this implies that 

higher maize output is associated with lower total production 

costs by 0.157 units. This result may seem counterintuitive at 

first glance, but it suggests economies of scale or efficiency 

gains as production levels increase.  

However, these results revealed the role of factors such as 

land rent, seed costs, organic manure expenses, labour inputs, 

and maize output in determining the total production costs of 

maize farming under CSAPs in Southeast Nigeria. 
 

Table 4: The cost function of maize production in Southeast, 

Nigeria 
 

Parameter estimate Estimate Std. Error Z value 

(Intercept) 5.996 0.305 19.64*** 

Log (cost of land rent) 0.094 0.037 2.55** 

Log (cost of seed) 0.318 0.034 9.42*** 

Log (cost of organic manure) 0.069 0.019 3.57*** 

Log (labour) 0.175 0.030 5.86*** 

Log (maize output) -0.157 0.080 -1.97* 

Sigma-square 0.274 0.022 12.60*** 

Gamma 0.988 0.004 222.71*** 

Log-likelihood -54.454   

Likelihood ratio test 249.12***   

Observation 375   

Source: Field Survey, 2023. (**, and ***) Significant @ 5% and 

1% respectively. 
 



 International Journal of Multidisciplinary Comprehensive Research www.multispecialityjournal.com 

 
    56 | P a g e  

 

4.2 The level of efficiencies among maize farmers under 

the CSAPs in Southeast, Nigeria 

The technical and allocative efficiency index of maize 

production under the CSAPs production system is presented 

in Table 5.  

 

Technical Efficiency (TE) 

Relative to TE index (TEI), the result categorized farmers 

into four groups, the TEI < 0.299 represents farmers with 

very low level of TE. However, none of the farmers fall into 

this category, indicating that there are no farmers with 

extremely poor TE. Again, a small percentage (0.8%) of 

farmers have TEI of 0.300 - 0.599, suggesting that there are 

a few farms with room for improvement in their TE. It was 

also observed that 37.1% of farmers have TEI value of 0.600 

- 0.899, indicating that a greater proportion of farmers exhibit 

moderate to high levels of TE. These farmers are operating 

fairly efficiently but still have some potential for further 

improvement. Furthermore, the last 62.1% of the farmers 

have a TEI ranging from 0.900 - 1.000, indicating that 

farmers under this category are operating very efficiently, 

with minimal room for further improvement in technical 

efficiency. 

The mean TEI of 0.894 suggests that, on average, maize 

farmers in Southeast Nigeria are operating at a relatively high 

level of TE under CSAPs. This indicates that the practice of 

CSA has generally led to efficient resource utilization and 

production processes leaving room for a 10.6% improvement. 

Furthermore, the standard deviation of 0.061 suggests 

variability in technical efficiency levels among farmers. 

Some farms may be operating significantly below the average 

efficiency level, indicating potential areas for improvement. 

This result on mean TE is in higher than the 0.620 reported 

in Umaru and Maurice (2019) and little lower than the 0.950 

reported in Ebukiba et al. (2020) [26]. 

 

Allocative efficiency 

Approximately 6.9% of farmers have allocative efficiency 

value of < 0.299, indicating that a small proportion of farmers 

have significant room for improvement in resource 

allocation. Around 4.5% of farmers have allocative efficiency 

index of 0.300 - 0.599, suggesting that we still have some 

farmers with suboptimal resource allocation practices. 

Equally, the majority (73.1%) of farmers have allocative 

efficiency index value of 0.600 - 0.899, indicating that the 

majority of farmers exhibit moderate to high levels of 

allocative efficiency. These farmers are allocating their 

resources fairly but may still have some room for 

improvement. The last 15.5% of farmers have an efficiency 

value of 0.900 - 1.000. These farmers are optimally allocating 

resources to maximize production outputs. 

The mean allocative efficiency index of 0.747 suggests that, 

on average, farmers in the sample are operating at a 

moderately high level of allocative efficiency under CSAPs. 

This indicates that the practice of CSA has generally led to 

efficient resource allocation within farms. These findings 

uncover the need to optimize resource allocation strategies to 

enhance farm profitability and sustainability. This result is 

higher than the 0.450 reported in Abubakar and Onwujioba 

(2023). Efficient resource allocation can lead to increased 

productivity, reduced waste, and improved resilience to 

external shocks (Campbell et al., 2016). This also aligns with 

Aryal et al. (2019) who noted that strategies such as better 

farm management practices, access to timely information, 

and technology adoption can help improve allocative 

efficiency on farms. 

 
Table 5: level of efficiency index 

 

 Technical efficiency Allocative efficiency 

Efficiency 

index 

Frequen

cy 

Percenta

ge 

Frequen

cy 

Percenta

ge 

< 0.299 0 0 26 6.9 

0.300 - 0.599 3 0.8 17 4.5 

0.600 - 0.899 139 37.1 274 73.1 

0.900 - 1.000 233 62.1 58 15.5 

Mean 0.894  0.747  

Std. dev. 0.061  0.186  

Source: Field Survey, 2023.  
 

4.3.1 Determinants of Maize farmers’ technical efficiency 

Table 6 provides insight into the determinants of maize 

farmers' technical efficiency under climate-smart agricultural 

practices (CSAPs) in Southeast Nigeria. The coefficient of 

water management (β = 0.059) was positive and significant 

at a 5% level of probability, this suggests that better water 

management practices contribute to higher technical 

efficiency among maize farmers. The result happens to be in 

agreement with Raihan et al. (2023) who noted that efficient 

water usage, such as through irrigation systems or rainwater 

harvesting, enhances productivity. 

The use of an irrigation pump for dry season planting, 

mulching, obtaining credit, and use of organic fertilizer to 

improve soil texture and structure were not significant but 

had the positive sign expected in a-priori. These variables do 

not show statistically significant effects on technical 

efficiency, suggesting that their impact may be negligible or 

context-dependent. This result was in agreement with Mashi 

et al. (2022) [45] who reported irrigation farming as a CSAPs 

in their study. 

Again, age, sex, household size, marital status, and training 

in the use of CSAPs were not significant but had the positive 

sign expected in a-priori, suggesting that their effect on 

productivity may be minimal in this context. These 

significant variables are in agreement those reported by 

Afolami and Faleye (2020) [6] who noted that age, sex, and 

household size has a positive effect on the decision to adopt 

CSAPs. 

Further research is needed to understand the interactions 

between different agricultural practices and socioeconomic 

factors in determining technical efficiency. This will help 

tailor interventions to specific contexts and maximize their 

impact on agricultural productivity and sustainability. While 

certain climate-smart agricultural practices show promise in 

enhancing technical efficiency among maize farmers, the 

overall determinants of efficiency are multifaceted and 

context-specific. Addressing these factors effectively can 

help improve productivity and resilience in agricultural 

systems under climate change. 
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Table 6: Determinants of maize farmers’ technical efficiency. 
 

Technical efficiency Estimate Std. Error Z value 

(Intercept) 1.924 0.223 8.61*** 

CSA Practices Determinants 

Water management 0.059 0.026 2.27** 

Minimum tillage -0.019 0.029 -0.68 

Residue management -0.014 0.027 -0.54 

Use of irrigation pump for dry season planting 0.011 0.024 0.48 

Mulching 0.007 0.028 0.25 

Crop rotation 0.010 0.026 0.38 

Improving access to information -0.028 0.024 -1.13 

Adopting early planting 0.021 0.026 0.84 

Obtaining credit -0.010 0.033 -0.31 

Use of organic fertilizer to improve soil texture and structure 0.001 0.034 0.03 

Socioeconomic determinants 

Age 0.001 0.002 0.66 

Education -0.002 0.004 -0.36 

Sex 0.062 0.057 1.10 

Marital status 0.031 0.032 0.99 

Farming experience 0.000 0.004 -0.05 

Household size 0.011 0.009 1.17 

Cooperative member -0.041 0.057 -0.73 

Credit access -0.087 0.156 -0.56 

Extension advisory -0.029 0.022 -1.31 

Training on CSAPs 0.060 0.156 0.38 

Phi coefficients 34.93 2.564 13.62*** 

Log-likelihood: 606.2   

Source: Field Survey, 2023. (**, and ***) Significant @ 5% and 1% respectively. 

 

4.3.2 Determinants of Maize farmers’ allocative efficiency 

Table 7 provides an insight into the determinants of maize 

farmers' allocative efficiency (AE) under climate-smart 

agricultural practices (CSAPs) in Southeast, Nigeria. The 

result of the beta regression analysis revealed a significantly 

negative coefficient of water management (β = -0.096) at the 

5% level of probability suggesting that better water 

management practices lead to lower allocative efficiency 

among maize farmers. This unexpected result may indicate 

that farmers with more sophisticated water management 

techniques may be over-allocating resources in certain areas, 

leading to suboptimal resource utilization. 

The positive and significant coefficient Improving Access to 

Information (β = 0.072) at the 10% level of probability 

implies that better access to information has a positive effect 

on allocative efficiency, although the effect is only 

marginally significant. This suggests that access to 

information may enable farmers to make more informed 

decisions about resource allocation. 

 
Table 7: Determinants of allocative efficiency of maize farmers under CSAPs system 

 

Allocative efficiency Estimate Std. Error Z value 

(Intercept) 0.739 0.350 2.11** 

CSA Practices determinants 

Water management -0.096 0.041 -2.34** 

Minimum tillage -0.006 0.045 -0.13 

Residue management -0.002 0.042 -0.04 

Use of irrigation pump for dry season planting 0.025 0.037 0.66 

Mulching -0.040 0.044 -0.91 

Crop rotation 0.036 0.041 0.87 

Improving access to information 0.072 0.038 1.87* 

Adopting early planting 0.086 0.040 2.14** 

Obtaining credit 0.013 0.052 0.26 

Use of organic fertilizer to improve soil texture and structure -0.035 0.053 -0.65 

Socioeconomic determinants  

Age 0.000 0.003 0.08 

Education 0.001 0.007 0.09 

Sex 0.093 0.088 1.06 

Marital status 0.045 0.049 0.90 

Farming experience -0.001 0.006 -0.23 

Household size 0.000 0.014 0.03 

Cooperative member -0.265 0.090 -2.96*** 

Credit access 0.120 0.254 0.47 

Extension advisory 0.108 0.035 3.07*** 

Training on CSAPs 0.025 0.255 0.10 

Phi coefficients 6.1357 0.4288 14.31*** 

Log-likelihood: 186.4   

Source: Field Survey, 2023. (**, and ***) Significant @ 5% and 1% respectively. 
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The coefficient of Adopting Early Planting (β = 0.086) was 

positive and significant at the 5% level of probability, 

indicating that adopting early planting practices contributes 

to higher allocative efficiency among maize farmers. This 

implies that early planting may lead to better resource 

allocation decisions, resulting in improved productivity. 

Among the minimum tillage, residue management, use of 

irrigation pump for dry season planting, mulching, crop 

rotation, and use of organic fertilizer; none of these variables 

show statistically significant effects on allocative efficiency. 

This suggests that their impact on resource allocation may be 

limited or context-dependent. 

Based on the socioeconomic determinants, cooperative 

membership had a negative and significant coefficient (β = 

0.265) at the 1% level of significance, suggesting that being 

a cooperative member is associated with lower levels of 

allocative efficiency. This is an indication that information 

asymmetry within cooperatives could lead to misallocation of 

resources and hinder farmers' ability to make informed 

decisions regarding resource allocation. 

Furthermore, extension advisory services (β = 0.108) had a 

positive and significant coefficient at the 1% level of 

probability, suggesting that farmers who receive extension 

services are better equipped to make informed decisions 

about resource allocation, leading to improved efficiency in 

utilizing inputs such as land, labour, seeds, fertilizers, and 

capital among others. Teklewold et al. (2019) and Mahmood 

et al. (2021) noted that farmers who receive extension 

services are likely to adopt CSAPs better. These practices 

contribute to efficient resource allocation to ameliorate the 

negative impact of climate change on agriculture. 

Summarily, the results underscore the importance of 

understanding the complex interplay between different 

factors influencing allocative efficiency in agriculture. 

Effective resource allocation is crucial for maximizing 

productivity and sustainability, and targeted interventions 

may be needed to address specific challenges identified in 

this analysis. 

 

5 Conclusion and Recommendation 

The results exposed the efficiency and determinants of maize 

production under climate-smart agricultural practices 

(CSAPs) in Southeast Nigeria. Through stochastic frontier 

analysis (SFA), the study revealed insights into both technical 

and allocative efficiency, along with the factors influencing 

these efficiencies. Technical efficiency analysis indicated 

that, on average, maize farmers in Southeast Nigeria are 

operating at a relatively high level of efficiency under 

CSAPs. However, there remains room for improvement, 

particularly in enhancing water management practices and 

leveraging extension advisory services. Allocative efficiency 

analysis further emphasized the importance of effective 

resource allocation strategies, with a notable negative 

association between cooperative membership and allocative 

efficiency. This suggests potential challenges related to 

information asymmetry within cooperatives. However, the 

following recommendation was proposed: 

1. Given the good response of extension advisory services 

on allocative efficiency, there is a need to strengthen 

extension programs. This could involve increasing the 

reach of extension services, improving the quality of 

information dissemination, and providing tailored 

support to farmers to enhance their decision-making 

processes. 

2. Policymakers and agricultural stakeholders should 

address the challenges associated with cooperative 

membership and resource allocation. Efforts to reduce 

information asymmetry within cooperatives, improve 

governance structures, and enhance decision-making 

processes could contribute to improved allocative 

efficiency among farmers. 

3. Encouraging the practice of climate-smart agriculture 

such as early planting, efficient water management, and 

soil conservation techniques can contribute to both 

technical and allocative efficiency. Providing incentives, 

training programs, and access to relevant information 

and technologies can facilitate the adoption of these 

practices. 

By implementing these recommendations, 

policymakers, and other stakeholders in the sector can 

contribute to enhancing maize production efficiency and 

promoting sustainable agricultural development in 

Southeast Nigeria amidst the challenges posed by 

climate change and evolving market dynamics.  
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